Emerging AV1 Video Codec - Novel Prediction, Transform, and Image Restoration Tools

Zoe Liu (zoeliu@google.com) Google Inc.

The story continues with AV1

Alliance for Open Media (AOM) is formed in 2015 Q4

AV1 AOMedia Video 1

THE OPEN AND ROYALTY-FREE CODEC FOR NEXT-GENERATION ULTRA HIGH DEFINITION MEDIA

• AOMedia git repository: git clone https://aomedia.googlesource.com/aom

New Coding Tools in AV1

- Prediction tools
- Transform tools
- In-loop filtering tools
- Miscellaneous tools

AV1 Technical Overview: Prediction Tools: Partition Expansion

Partition structure VP9: 4-way partition tree 64x64 down to 4x4

Sub 8x8 constraints

AV1

Alliance for Open Media

Expands to a 10-way partition tree *Larger superblock size* (128x128) More flexibility for 4x4 blocks

AV1 Technical Overview: Prediction Tools: Partition Expansion

- AV1 adds more flexibility to sub-8x8 blocks from VP9
- VP9 restrictions for 4x4:
 - References and interpolation filters combined at 8x8 level
 - INTER / INTRA mixing disallowed at sub-8x8 level
- AV1 flexibilities:
 - Allow 2x2 chroma inter prediction
 - Smallest transform is still 4x4
 - INTER / INTRA mixing possible for Luma, not for Chroma
 - For chroma use mode for the bottom-right Luma
 - Compound modes disabled for sub-8x8 blocks
 - Keeps the same hardware throughput as VP9

AV1 Technical Overview: Prediction Tools VP9 Refresher

Alliance for Open Media

AV1 Technical Overview: Prediction Tools: INTRA Prediction - Directional Modes

- Directional Modes
 - Keep 8 major directions as in VP9
 - Finer-directions added as delta from the major ones
 - Up to 56 directions overall
 - Depends on block size

AV1 Technical Overview: Prediction Tools: INTRA Prediction - Non-directional Modes

- Paeth Mode
 - Replaces TM mode in VP9

TM Mode: $P_{TM} = L + T - TL$

Paeth Mode: P_{Paeth} = argmin |x - P_{TM} |, over x \in {L, T, TL}

AV1 Technical Overview: Prediction Tools: INTRA Prediction - Non-directional Modes

- Smooth Modes
 - \circ Three modes
 - Horizontal, Vertical and Bi-directional

SMOOTH_H: $P_{SMOOTH_H} = w(x) L + (1-w(x)) TR$ SMOOTH_V: $P_{SMOOTH_V} = w(y) T + (1-w(y)) BL$ SMOOTH: $P_{SMOOTH_V} = \frac{1}{2} (P_{SMOOTH_H} + P_{SMOOTH_V})$

AV1 Technical Overview: Prediction Tools: INTRA Prediction - Palette mode

- Particularly useful for screen content
- Palette representation:
 - Encode k distinct base colors: $k \in \{2, 3, ..., 8\}$,
 - Encode a k-ary color index map
- Base colors:
 - Delta encoded w/ colors from causal neighbor blocks
- Color index map:
 - $\circ~$ Use causal neighbor pixels within block as context
- Regarded as a new INTRA prediction mode

AV1 Technical Overview: Prediction Tools: INTRA Prediction - Chroma from Luma [Mozilla]

- Mechanism for INTRA chroma prediction
 - Use reconstructed luma to predict chroma components

 $\alpha_{Cb},\,\alpha_{Cr}$ signaled in bit-stream

^{1.} Luma average computed over the luma transform block

^{2.} Chroma DC_PRED computed over prediction block

AV1 Technical Overview: Prediction Tools: INTER Prediction: Reference Expansion

- Number of available references for each frame:
 - $\circ~$ Expanded to 7 (from 3 in VP9) out of 8 in frame store
- Provides more flexibility to establish a hierarchical structure
 - Combination of *invisible* reference frames and traditional B-like frames

AV1 Technical Overview: Prediction Tools: INTER Prediction: MV Referencing

- In modern codecs, motion vectors comprise a fairly large portion of the bitrate
 - Better MV prediction essential for good compression efficiency

Alliance for Open Media

AV1 Technical Overview: Prediction Tools: INTER Prediction: MV Referencing in VP9

- VP9 scheme:
 - Survey MVs in causal neighborhood of current frame & temporally collocated MV in previous frame
 - Make ranked list of 2 MVs for each reference
 - Send one of 4 modes:

Current block

AV1 Technical Overview: Prediction Tools: INTER Prediction: Dynamic MV Referencing in AV1

- AV1 scheme:
 - Search range expanded
 - Make ranked list of 4 candidate MVs for Single Reference
 - Same 4 modes used for single reference

AV1 Technical Overview: Prediction Tools: INTER Prediction: Dynamic MV Referencing in AV1

- AV1 Scheme (cont'd):
 - Compound modes use separate pair-wise ranked lists
 - $\circ~$ Compound modes expanded to 8 ~

AV1 Technical Overview: Prediction Tools: INTER Prediction: Extended Compound Modes

- VP9 Compound modes
 - Only allows ½, ½ combination of two predictors
 - Same-sided compound modes not allowed
- AV1 Compound Modes
 - $\circ\,$ Allow compound from two predictors on the same side
 - Allow flexible blending of two predictors:
 - INTER-INTER
 - Compound Segment
 - Wedge Inter-Inter
 - INTER-INTRA
 - Gradual
 - Wedge Inter-Intra

AV1 Technical Overview: Prediction Tools: INTER Prediction: Extended Compound Modes

AV1 Technical Overview: Prediction Tools: INTER Prediction: Interinter Compound Segment Mode

- Difference modulated mask generation
 - Pixels with a larger difference between two Inter predictor candidates get a larger blending mask differential between one predictor vs. the other

■ $m(i, j) = 38 + |P_1(i, j) - P_2(i, j)| >> 4$

 \circ Send an additional bit to indicate whether to switch P₁ and P₂

AV1 Technical Overview: Prediction Tools: INTER Prediction: Interinter Wedge Mode

- Blocks can be on boundary of moving objects.
 - Boundary not necessarily horizontal or vertical
 - Going down to too small blocks not efficient.
- One Approach:
 - Allow blocks to have arbitrary partitions.
 - Predict each side with a different MV/Ref combination.
 - Problem:
 - Inexact partitioning introduces spurious high frequencies
- Solution:

Alliance for Open Media

- Soft-partitioning with a cliff-like mask for blending wedge
- \circ $\,$ Only a few masks are enough and can be compactly conveyed

AV1 Technical Overview: Prediction Tools: INTER Prediction: Interinter Wedge Mode

- Wedge mask codebook
 - Send index from codebook
 - Fully determines the mask
 - Codebook generation
 - Conveniently generated for each block-size from three length-64 arrays row-shifting
 On-the-fly generation
 - Overlapped wedge motion compensation

AV1 Technical Overview: Prediction Tools: INTER Prediction: Interinter Wedge Mode

Alliance for Open Media

AV1 Technical Overview: Prediction Tools: INTER Prediction: InterIntra Gradual Modes

- Interintra compound between Inter and Intra
- Interintra Gradual Modes
 - Decay weight gradually for Intra from prediction boundary - increase weight for Inter correspondingly
 - \circ $\,$ Four modes supported:
 - II_H_PRED
 - Use Hor Intra pred decay weight horizontally
 - II_V_PRED
 - Use Ver Intra pred decay weight vertically
 - II_SMOOTH_PRED
 - Use SMOOTH Intra pred decay weight based on distance from closest left or top boundary
 - II_DC_PRED
 - Use DC Intra pred simple average with Inter

II_H_PRED

II_V_PRED

II_SMOOTH_PRED

Open Media

AV1 Technical Overview: Prediction Tools: INTER Prediction: InterIntra Wedge Modes

- Interintra Wedge Modes
 - One side of Wedge closer to top and left boundaries uses Intra The other side uses Inter - same wedge codebooks as Interinter

AV1 Technical Overview: Prediction Tools: INTER Prediction: Overlapped Block Motion Compensation

- OBMC
 - Blend multiple predictors from neighboring blocks
 - $\circ~$ Not a new concept
 - But H.263 in the 90s was the last codec to use it when block partitioning was much more straightforward
- AV1 reintroduces OBMC
 - Much harder to incorporate in a modern codec and still get gains

AV1 Technical Overview: Prediction Tools: INTER Prediction: Overlapped Block Motion Compensation

- Causal OBMC mode
 - Blend multiple predictors using motion information from neighboring causal blocks on top or left.
 - 1-D Raised Cosine function for blending extending half-way to the width / height of current block B

AV1 Technical Overview: Prediction Tools: INTER Prediction: Affine Motion

- True motion in a scene is never translational.
- Modern video codecs however use only translational models.
 - Flexibility in block size partitioning in modern codecs obviate the need for more complicated motion
 - But there is a cost for going down to too small blocks
 - Non-translational motion parameters are expensive to send
 - $\circ~$ Warping is expensive in hardware and software
- To better the state-of-the-art we need to break this barrier
- AV1 does this by introducing two new coding modes
 - Global Affine
 - Local Affine

Alliance for Open Media

AV1 Technical Overview: Prediction Tools: INTER Prediction: Affine Warp Implementation

• AV1 - warped model $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} u\\y \end{bmatrix}$ Limit to Affine \bigcirc $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \gamma & 1 + \Delta \end{bmatrix} \begin{bmatrix} 1 + \alpha & \beta \\ 0 & 1 \end{bmatrix}$ Affine model Only small motions \bigcirc allowed • Small Affine Advantage: Can be efficiently Ο Original warping matrix Vertical Shear Horizontal Shear implemented in hardware / software with two shears Hor shear just as in separable subpel interpolation. Ver 1/64th precision for shears Ο shear

AV1 Technical Overview: Prediction Tools: INTER Prediction: Affine Motion: Global Motion Mode

- For each frame in its header for each reference, optionally send:
 - 6-parameter affine parameters
 - 4-parameter similarity parameters (rotation-zoom)
 - 2-parameter translational parameters
- Within the frame if ZEROMV is signaled for a prediction block with a reference that has global parameters, warped prediction is used
 - For sub-8x8 blocks translational motion is used where the block's MVs are computed using global parameters at its center

AV1 Technical Overview: Prediction Tools: INTER Prediction: Affine Motion: Local Warped Motion Mode

- Global motion mode works great when there is a strong consistent camera motion in a frame
 - Motion in a scene may not be regular
- Ideally need to send multiple parameters within each frame
 - Too expensive
- Local Warped motion in AV1:
 - Estimate affine parameters from translational MVs in causal neighborhood of a block, as well as the translational MV transmitted for the current block.
 - Low-complexity least squares problem solved on decoder side.

AV1 Technical Overview: Prediction Tools: INTER Prediction: Affine Motion: Local Warped Motion Mode

- Goal: Estimate affine parameters using neighboring blocks' MV with same reference.
- Affine least squares:
 - Can be always decomposed into two 3-dim least squares problems
 - MV transmitted is constrained to be consistent with model at the block center
 - This constraint converts each 3-dim problem into a simpler 2-dim problem that is readily integerized.

Blocks 1, 3, 4 have same reference as current block

AV1 Technical Overview: Prediction Tools: INTER Prediction: Sub-pel interpolation filter expansion

- VP9 interpolation filters:
 - 8-tap 3 choices: {REGULAR, SHARP, SMOOTH}
 - Signaled in the bit-stream
- AV1 interpolation filters:
 - Allow different filters horizontally and vertically
 - Expanded to {REGULAR, SHARP, SMOOTH} in each direction to make 9 filters overall
 - Signaled in the bitstream

AV1 Technical Overview: Prediction Tools:

- INTER Prediction: Sub-pel interpolation intermediate precision
 - VP9 filtering precision:
 - Brings pixel precision after horizontal filtering down to pixel precision before vertical pass
 - Compound prediction:
 - Each predictor is maintained at pixel precision before averaging
 - AV1 intermediate precision:
 - Maintains higher intermediate precision between horizontal and vertical filtering passes
 - Compound prediction:
 - Additionally maintain higher precision before averaging two predictors

AV1 Technical Overview: Prediction Tools: INTER Prediction: Sub-pel interpolation intermediate precision

Keep 3 extra bits between horizontal and vertical filters from source bit-depth [NOTE: filters are 7 bits]

Open Media

AV1 Technical Overview: Prediction Tools: Summary

Open Media

AV1 Technical Overview: Transform Tools: VP9 Transforms Refresher

AV1 Technical Overview: Transform Tools: AV1 Expanded Transform Set

- AV1 Expanded transforms
 - Expands transforms to cover all combinations of:
 - {DCT, ADST, FLIPADST, IDTX} horizontal and vertical.
 - 16 transforms for 4x4/8x8 sizes
 - Fewer at larger sizes
 - Overheads: Indicate transform used
 - Transform Skip = IDTX x IDTX
 - Very good for screen content

AV1 Technical Overview: Transform Tools: Rectangular Transform Units

- AV1 adds support for 2:1 rectangular transform units
 - Can only be used for rectangular partitions
 - For 2:1 rect partitions, rect transform can only be at the same size
 - $\circ~$ For 4:1 rect partitions, rect transform can only be used at half size

Rect transform for 4:1 partition

AV1 Technical Overview: Transform Tools: Recursive partitioning of Transform units

- AV1:
 - Allows transforms within a single prediction unit to have quadtree partitions up to two levels
 - More flexibility can isolate part of a larger block with residue concentration
 - Max transform size still smaller than Partition Unit size
 - Each transform unit has its own transform type

AV1 Technical Overview: Transform Tools: Transform Tools Summary

AV1 Technical Overview: Transform Tools: Coefficient Coding

- VP9:
 - Binary non-adaptive arithmetic coding used throughout
 - Coefficient coding: Uses a binary tree with alphabet size of 11 or 12
- AV1:
 - Moving to a multi-symbol adaptive arithmetic coding model
 - Non-binary symbols are coded directly leading to increase in throughput
 - Coefficient coding modifications:
 - Intrinsically multi-symbol and symbol-adaptive

AV1 Technical Overview: Transform Tools: Coefficient Coding

- AV1 Coefficient coding:
 - A coefficient consists of:
 - A Sign
 - Magnitude Range combined with EOB and Zero Block. Has Head and a Tail Token:
 - A Head token from:
 - {BLOCK_ZERO, ZERO, ONE_EOB, ONE_NEOB, TWOPLUS_EOB, TOWPLUS_NEOB}
 - A Tail token: codes other ranges as a 9-valued symbol
 - Extra bits indicating the value within a range
 - Coded 4 at a time in 16-valued symbols

AV1 Technical Overview: Transform Tools: Adaptive Scan of Coefficients

- Optimize scan order for different transform sizes and types
 - Gather stats for non-zero transform coefficient locations in a frame for each transform size / type
 - $\circ~$ At the end of a frame:
 - Optimize for the best scan order for subsequent frames
 - Constraint: Maintain causality of coefficients visited
 - Topological sort
 - Enabled for 9 transform types:
 - {DCT, ADST, FlipADST} x {DCT, ADST, FlipADST}

AV1 Technical Overview: In-loop filtering tools

- Many sophisticated image restoration techniques known
 - Deblocking, Deringing, Deblurring, Denoising, Superresolution
- Seldom used for compression
 - Except Deblocking which is standard
 - Computation is a major concern for video
- Restorability can be equated with compressibility
 - Information that can be restored, can be saved !

AV1 Technical Overview: In-loop filtering tools

- Several tools in AV1 for in-loop restoration other than Deblocking
 - CDEF (CLPF, Deringing)
 - Loop Restoration (Wiener, Dual Self-guided filter)

Alliance for Open Media

AV1 Technical Overview: In-loop filtering tools Deblocking filter Advances:

- VP9:
 - One filter level sent per frame
- AV1:
 - Four filter levels per frame:
 - Luma plane: horizontal and vertical filter levels
 - Chroma plane: U, V each has its own filter level.
 - Adds ability to change filter level from superblock to superblock
 - Parallel deblocking [Intel/Microsoft]
 - Apply deblocking for all vertical edges first, then horizontal
 - Adds ability for parallelism

AV1 Technical Overview: In-loop filtering tools CDEF (Constrained Directional Enhancement Filter) [Mozilla/Cisco]

• CDEF:

- Combination of Daala Deringing filter and Cisco's Constrained Low Pass Filter
- \circ $\;$ Adapts filtering to direction of edges and patterns in an image $\;$
- Steps:
 - Direction estimation:
 - Conducted at 8x8 level by minimizing variances along predefined lines
 - Based on direction use a nonlinear filter
 - 5x5 support region

Open Media

AV1 Technical Overview: In-loop filtering tools CDEF [Mozilla/Cisco]

- Direction-adaptive nonlinear filtering in CDEF:
 - Filter expressed as difference to center pixel of 5x5 support region
 - Differences go through nonlinear damping function f() before being filtered through a *primary* and a *secondary* 2D filter
 - Sum the two filter outputs, clip to the max difference within the 5x5 block, add to the center pixel.

AV1 Technical Overview: In-loop filtering tools Loop-Restoration: Switchable framework

- Loop-Restoration:
 - Switchable restoration framework
 - Rationale:
 - Same restoration scheme may not be suitable to restore all parts of frame
 - A highly adaptive scheme may be too complex on decoder side
 - How it works
 - Divide a frame into multiple restoration units (RU)
 - Apply a different scheme to restore each RU
 - Send parameters needed for each RU
 - The number of tools can grow over time
 - Manageable hardware and software complexity since only one is done for any RU.

AV1 Technical Overview: In-loop filtering tools Loop-Restoration: Wiener Filter

- Separable Symmetric Normalized Wiener filter:
 - 7-tap horizontal and 7-tap vertical separable
 - Symmetric, Normalized
 - ~30 bits per RU, Easy for decoder
- Encoder:

Alliance for Open Media

- Design filters s.t. when applied to a deblocked frame produces an output closer to source
- Design:
 - Classical non-separable LMMSE design: H = R_{xx}⁻¹ R_{xy} not possible
 - Impose separability, symmetry and normalization constraints
 - Iterative design for hor/vert filters

Degraded Source

Clean Source

y

AV1 Technical Overview: In-loop filtering tools Loop-Restoration: Dual Self-guided filter

- Guided image filtering [2010]
 - Fit a local linear model considering a guide image
 - Self-guided: Guide image = Input Image
 - $\circ~$ Can be used as an edge-preserving smoother
- Steps with parameters (r, e) in AV1:
 - Obtain mean μ and variance σ^2 of pixels in a (2r + 1) x (2r + 1) window around every pixel.
 - Compute: $f = \sigma^2/(\sigma^2 + e)$; $g = (1 f)\mu$
 - Compute F, G by averaging f, g in a 3x3 area around each pixel.
 - Filter pixel value using: y = x. F + G
 - Efficient implementation possible: readily integerized / vectorized

 $⁽²r + 1) \times (2r + 1)$

Open Media

AV1 Technical Overview: In-loop filtering tools Loop-Restoration: Dual Self-guided filter

- Dual Self-guided filter with subspace projection in AV1:
 - Filter twice: Once with (r_1, e_1) yielding X_1 , and once again with (r_2, e_2) yielding X_2
 - Use weighted combination w/ weights { α , β } of X₁, X₂, to get final output
 - (r_1, e_1, r_2, e_2) taken from a small 4-bit codebook $(r_1 = 1; r_2 = 2);$
 - \circ { α , β } uses 7-bits each
 - ~18 total bits per RU

AV1 Technical Overview: In-loop filtering tools Deblocking/CDEF/LR Integration

- Cascade:
 - $\circ~$ Deblocking, CDEF and LR needs to work in cascade mode
- Line-buffer problem
 - A straightforward application of one after the other will increase line-buffers significantly for a hardware implementation
- Ongoing work
 - Shift grid of deblocking and CDEF/LR
 - LR modifications to use pre-CDEF input as borders of a processing unit
 - $\circ~$ Will eventually reduce line buffers to the same level as VP9 ~

AV1 Technical Overview: Miscellaneous tools Underlying Entropy Coder

- VP9:
 - Bitstream is binary non-adaptive arithmetic encoded
 - Multi-symbol alphabet decomposed into a binary tree
 - Forward and Backward updates at frame level
- AV1:
 - Moving to a multi-symbol adaptive arithmetic coding model [Mozilla]
 - Taken from Daala
 - Non-binary symbols are coded directly leading to increase in throughput
 - Multi-symbol adaptation
 - Forward updates not needed
 - Backward update is much simpler

AV1 Technical Overview: Miscellaneous tools Quantization Advances [CISCO]

- Quantization matrices (QMs)
 - AV1 supports quantizing coefficients using 15 sets of QMs based on Contrast-Sensitivity Functions
 - QMs are applied to a frame based on selectable scaling of its base quantizer level – higher levels of quantization imply flatter matrices
 - Allows finer adjustments than just inter versus intra
- Superblock delta-quantization
 - Allow per-superblock changes in quantization parameter to support sub-frame (and low-latency) rate control
 - Additive changes on top of segmentation-level parameters to support both ROI and RC simultaneously

AV1 Technical Overview: Miscellaneous tools Tiling Features

- Motivation:
 - Parallel encoding/decoding for speed
 - Random Access: Allow decoder to extract only an interesting section in a frame
 - Error-resilience
- AV1 tiling features:
 - Independent tiles so that tiles in a frame can be encoded / decoded in parallel.
 - Tile width ranges from 64 pixels to 4096 pixels.
 - Tile area limited to a maximum of 4096 x 2304 pixels.
 - Support flexible tile, including uniform and non-uniform tile spacing.
 - Tiles can be grouped into *tile_groups* and each *tile_group* is independently decode-able to achieve error resilience.
 - Loop-filtering can be enabled or disabled across tiles.

AV1 Technical Overview: Miscellaneous tools Hardware Simplification Contributions

- Several contributions from various partners to simplify hardware
 - MV referencing simplifications
 - 7-bit filter taps
 - Deblocking + CDEF + LR pipeline

Preliminary Results AWCY

- <u>www.arewecompressedyet.com</u>
 - An automatic service for compressing videos and comparing coding efficiency among AV1, VP9, Daala, Thor, and other codecs.
 - Maintained by: xiph.org foundation [Mozilla]
 - Chosen as official testing infrastructure for AOM
 - Uses AWS Cloud resources
 - Supports several test sets, and test conditions

Preliminary Results AWCY: High Latency

- Objective-1 Fast High Latency
 - Constant Quality mode, 30 clips w/ 60 frames
- Candidates
 - Baseline: VP9 tip of tree; Test: AV1 (08/26/2017), X.265 ver 1.9

BDRATE	PSNR-Y	PSNR-Cb	PSNR-Cr	PSNR-HVS	CIEDE 2000	SSIM	MS-SSIM
<u>AV1</u> *	-25.58%*	-21.78%	-23.69%	-24.14%	-24.43%	-23.63%	-22.58%
<u>X.265</u> +	-4.46%	N/A	N/A	-2.25%	+13.33%	+8.24%	+7.88%

*X.265: --preset placebo --tune psnr --no-wpp

*AV1 target: -30% over VP9

Preliminary Results AWCY: Low Latency

- Objective-1 Fast Low Latency
 - Constant Quality mode, 30 clips w/ 60 frames
- Candidates
 - Baseline: VP9 tip of tree; Test: AV1 (09/15/2017)

BDRATE	PSNR-Y	PSNR-Cb	PSNR-Cr	PSNR-HVS	CIEDE 2000	SSIM	MS-SSIM
<u>AV1</u> *	-29.31%*	-28.43%	N/A	-27.11%	-28.10%	-30.48%	-28.44%

*AV1 target: -30% over VP9

Conclusion

- AV1 Coming Soon!
 - AOM has made decent progress towards a next generation royalty-free codec AV1
 - 25+% BDRATE reduction over VP9 and HEVC at high delay
 - 29+% BDRATE reduction over VP9 at low delay
 - With high-bit-depth internal there is an additional 3-4% gain
 - Our target: 30%
 - Google VP10 effort evolved into AV1
 - Expected AV1 freeze: December 2017
 - Encoder / decoder optimization will continue

Thank you!

▶iveVide⊙StackCon 聚音视 研修不止于形

关注LiveVideoStack公众号

回复 Zoe Liu 为讲师评分

